Enhanced trion emission from colloidal quantum dots with photonic crystals by two-photon excitation

نویسنده

  • Xingsheng Xu
چکیده

For colloidal quantum dots, the ongoing biggest problem is their fluorescence blinking. Until now, there is no generally accepted model for this fluorescence blinking. Here, two-photon excited fluorescence from CdSe/ZnS nanocrystals on silicon nitride photonic crystals is studied using a femtosecond laser. From analysis of the spectra and decay processes, most of the relative trion efficiency is larger than 10%, and the largest relative trion efficiency reaches 46.7%. The photonic crystals enhance the trion emission of CdSe/ZnS nanocrystals, where the enhancement is due to the coupling of the trion emission to the leaky mode of the photonic crystal slab. Moreover, the photonic crystals enhance the Auger-assisted trapping efficiency of electrons/holes to surface states, and then enhance the efficiency of the generations of charge separation and DC electric field, which modifies the trion spectrum. Therefore, a model is present for explaining the mechanism of fluorescence blinking including the effect of the environment.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Enhanced two-photon processes in single quantum dots inside photonic crystal nanocavities

We show that the two-photon transition rates of quantum dots coupled to nanocavities are enhanced by up to several orders of magnitude relative to quantum dots in bulk host. We then propose how to take advantage of this enhancement to implement coherent quantum-dot excitation by two-photon absorption, entangled photon pair generation by two-photon spontaneous emission, and single-photon generat...

متن کامل

Enhanced quantum dot optical down-conversion using asymmetric 2D photonic crystals.

Asymmetric 2D photonic crystals were fabricated using polymer embedded PbS quantum dots on plastic substrates for enhancing optical down conversion efficiency from blue to near infrared wavelengths through enhanced extraction and excitation effects. We demonstrate 8x improvement of QD emission at normal incidence extraction from enhanced extraction and 2.5x improvement in power conversion effic...

متن کامل

Surface recombination and charged exciton in nanocrystal quantum dots on photonic crystals under two-photon excitation

In this study, the two-photon excited fluorescence spectra from cadmium selenide quantum dots (QDs) on a silicon nitride photonic crystal (PhC) membrane under femtosecond laser irradiation were investigated. These spectra can be fit to a tri-Gaussian function in which one component is negative in amplitude, and in which the Gaussian components with positive amplitude are assigned to exciton emi...

متن کامل

Enhanced fluorescence emission from quantum dots on a photonic crystal surface.

Colloidal quantum dots display a wide range of novel optical properties that could prove useful for many applications in photonics. Here, we report the enhancement of fluorescence emission from colloidal quantum dots on the surface of two-dimensional photonic crystal slabs. The enhancement is due to a combination of high-intensity near fields and strong coherent scattering effects, which we att...

متن کامل

Enhanced Photoluminescence from Embedded PbSe Colloidal Quantum Dots in Silicon-Based Random Photonic Crystal Microcavities

The experimental observation of enhanced photoluminescence from high-Q silicon-based random photonic crystal microcavities embedded with PbSe colloidal quantum dots is being reported. The emission is optically excited at room temperature by a continuous-wave Ti-sapphire laser and exhibits randomly distributed localized modes with a minimum spectral linewidth of 4 nm at 1.5 μm wavelength.

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:

دوره 3  شماره 

صفحات  -

تاریخ انتشار 2013